Composing Byte-Pair Encodings for Morphological Sequence Classification

Adam Ek, Jean-Philippe Bernardy {adam.ek, jean-philippe.bernardy}@gu.se

University of Gothenburg CLASP

Introduction

- In recent years, we see transformers applied to almost all NLP tasks
- The transformer also introduced sub-word tokenization (BPE tokenization) as a "standard tool"
- In this paper we explore how to create word representations from sub-word representations

- Create a vocabulary by splitting a set of strings (sentences) into N tokens, such that we can represent all strings
- The items in the vocabulary won't correspond to traditional linguistic units
- Thus, when doing some lexical task with the vocabulary, we assign *embeddings* to sub-word tokens
- The problem that arises is the following: how do we combine the token embeddings into word embeddings so we can analyze lexical units?

$$f([\boldsymbol{e}_{scient}, \boldsymbol{e}_{ifica}, \boldsymbol{e}_{lly}]) = \boldsymbol{e}_{scientifically}$$

- Morphological sequence classification is the task of predicting grammatical features of a word
- In the task, we are given a sentence where we need to predict the grammatical features of each word

 Grammatical features are primarily given by the *morphemes* in a word, so to predict grammatical features we must obtain information from all BPE tokens.

she loves giraffes 3;FEM;NOM;PRO;SG 3;FIN;IND;PRS;SG;V N;PL Table: Example from English-EWT.

- But, to some extent it's all about memorization:
- I (1;NOM;PRO;SG) vs We (1;NOM;PRO;PL)
- was (3;FIN;IND;PST;SG;V) vs is (3;FIN;IND;PRS;SG;V)
- This also applies to irregular verbs

Polish feminine nouns

	Hard dee	lension	Soft declension			
	Singular	Plural	Singular	Plural		
Nominative	map a	map y	granic a	granic e		
Accusative	map ę	map y	granic ę	granic e		
Genitive	map y	map	granic y	granic		
Locative	mapi e	map ach	granic y	granic ach		
Dative	mapi e	map om	granic y	granic om		
Instrumental	map ą	map ami	granic ą	granic ami		
Vocative	map o	map y	granic o	granic e		

Turkish	English				
Muvaffak	Successful				
Muvaffakiyet	Success				
Muvaffakiyet siz	Unsuccessful ('without success')				
Muvaffakiyetsiz leş (-mek)	(To) become unsuccessful				
Muvaffakiyetsizleş tir (-mek)	(To) make one unsuccessful				
Muvaffakiyetsizleştiri ci	Maker of unsuccessful ones				
Muvaffakiyetsizleştirici leş (-mek)	(To) become a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileş tir (- <i>mek</i>)	(To) make one a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriver(-mek)	(To) easily/quickly make one a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştirivere bil (-mek)	(To) be able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştirivere meye bil(-mek)	Not (to) be able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebil ecek	One who is not able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebilecekler	Those who are not able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebilecekleri miz	Those who we cannot make easily/quickly a maker unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimiz den	From those we can not easily/quickly make a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizden miş	(Would be) from those we can not easily/quickly make a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizdenmiş siniz	You would be from those we can not easily/quickly make a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizdenmişsinizcesine	Like you would be from those we can not easily/quickly make a maker of unsuccessful ones				

Data

Language	Typology	$\frac{\text{BPE}}{\text{word}}$	Tags	Train	Dev	Test
Basque-BDT	Agglutinative	1.79	919	97k	12k	11k
Finnish-TDT	Agglutinative	1.98	591	161k	19k	20k
Turkish-IMST	Agglutinative	1.73	1056	46k	5k	5k
Estonian-EDT	Agglutinative	1.86	512	346k	43k	43k
Spanish-AnCora	Fusional	1.25	177	439k	55k	54k
Arabic-PADT	Fusional	1.39	300	225k	28k	28k
Czech-CAC	Fusional	1.77	990	395k	50k	49k
Polish-LFG	Fusional	1.75	634	104k	13k	13k

1 Process sentence through the XLM-R_{base} model.

- **1** Process sentence through the XLM- R_{base} model.
- 2 Compute weighted sum over transformer layers with a parameter $w \in \mathbb{R}^{L}$

- **1** Process sentence through the XLM-R_{base} model.
- 2 Compute weighted sum over transformer layers with a parameter $w \in \mathbb{R}^{L}$
- **3** Align BPE-tokens to words

- **1** Process sentence through the XLM-R_{base} model.
- 2 Compute weighted sum over transformer layers with a parameter $w \in \mathbb{R}^{L}$
- 3 Align BPE-tokens to words
- 4 Compute word embeddings with a function f

A word X consists of the aligned BPE token embeddings and is a matrix of size (T, 768) where T is the number of aligned tokens.

First: $f(X)_i = X_i^0$

• Sum:
$$f(X)_i = \sum_{j=1}^T x_i^j$$

• Mean:
$$f(X)_i = \frac{1}{T} \sum_{j=1}^T x_i^j$$

RNN: Use final output from a LSTM

- 1 Process sentence through the XLM-R_{base} model.
- 2 Compute weighted sum over transformer layers with a parameter $w \in \mathbb{R}^{L}$
- 3 Align BPE-tokens to words
- 4 Compute word embeddings with a function f
- 5 Run the sentence through a word LSTM

- 1 Process sentence through the XLM-R_{base} model.
- 2 Compute weighted sum over transformer layers with a parameter $w \in \mathbb{R}^{L}$
- 3 Align BPE-tokens to words
- 4 Compute word embeddings with a function f
- 5 Run the sentence through a word LSTM
- 6 Predict grammatical features for the words

- We explore both finetuning the XLM-R model, and extracting bare features
- When finetuning, we freeze the XLM-R model the first epoch
- Adam optimizer (using cosine annealing learning rate with hard resets) with a learning rate of 0.001
- We use a lower learning rate for the XLM-R model (1e-6)
- Label smoothing of 0.03
- Weight decay of 0.05 and dropout throughout the model

Recap/outline

Figure: Model outline for a single word

		Finetuning					
Treebank	Baseline	First	Sum	Mean	RNN		
Basque-BDT	.676	.857	.884	.877	.901		
Finnish-TDT	.751	.961	.958	.960	.965		
Turkish-IMST	.620	.848	.859	.855	.884		
Estonian-EDT	.740	.956	.955	.955	.961		
Spanish-AnCora	.842	.977	.977	.977	.979		
Arabic-PADT	.770	.946	.946	.947	.951		
Czech-CAC	.771	.968	.968	.968	.975		
Polish-LFG	.657	.956	.953	.953	.959		
Average	.728	.933	.937	.936	.946		

Table: Accuracy for morphological tagging for the finetuning regime.

		Feature extraction					
Treebank	Baseline	First	Sum	Mean	RNN		
Basque-BDT	.676	.759	.789	.780	.834		
Finnish-TDT	.751	.853	.856	.847	.899		
Turkish-IMST	.620	.742	.741	.735	.775		
Estonian-EDT	.740	.855	.856	.853	.901		
Spanish-AnCora	.842	.951	.954	.952	.962		
Arabic-PADT	.770	.920	.923	.920	.936		
Czech-CAC	.771	.863	.887	.881	.924		
Polish-LFG	.657	.828	.844	.840	.878		
Average	.728	.846	.856	.851	.888		

Table: Accuracy for morphological tagging for the feature extraction regime.

		Fine	etuning Feature extraction				n	
Treebank	First	Sum	Mean	RNN	First	Sum	Mean	RNN
eu-BDT	.739	.802	.790	.835	.657	.715	.703	.774
fi-TDT	.940	.946	.946	.952	.780	.805	.794	.861
tr-IMST	.730	.780	.778	.818	.653	.683	.664	.711
et-EDT	.938	.939	.939	.949	.779	.805	.803	.868
es-AnCora	.956	.961	.959	.964	.922	.937	.930	.947
ar-PADT	.889	.896	.898	.907	.902	.909	.906	.923
cz-CAC	.940	.947	.947	.959	.786	.849	.840	.900
pl-LFG	.917	.920	.918	.927	.696	.761	.752	.812
Average	.881	.899	.897	.913	.772	.808.	.799	.849

Table: Accuracy for morphological tagging on all words that are composed of two or more BPE tokens.

- We might also be interested in how the accuracy looks when the number of tokens per word varies
- Roughly the same trends are observed, but with some variation
- Note: the distribution of tokens per word is zipfian

Accuracy given tokens per word - Agglutinative languages

Accuracy given tokens per word - Fusional languages

Commutative methods

- First: This method adds an implicit objective to the transformer model, push all the predictive information to the first token of a word
- Sum and Mean: Sum performs slightly better than averaging in the feature-extraction training regime, but the difference is essentially gone when finetuning.
- An advantage the RNN method have over these three methods is more capacity (in terms of additional parameters)
- To make a fair comparison, we parameterize these methods with a non-linear transformation with ReLU activation, which we pass all token embeddings through.

		Finetu	uning	Feature extraction				
	First	Sum	Mean	RNN	First	Sum	Mean	RNN
eu	.864	.894	.890	.901	.772	.793	.794	.834
fi	.958	.959	.961	.965	.857	.856	.855	.899
tr	.850	.875	.867	.884	.742	.722	.729	.775
et	.956	.958	.958	.961	.865	.856	.853	.901
sp	.978	.977	.978	.979	.953	.954	.952	.962
ar	.949	.945	.947	.951	.925	.923	.920	.936
cz	.969	.972	.972	.975	.873	.887	.881	.924
pl	.957	.953	.955	.959	.832	.844	.840	.878
Avg.	.935	.942	.941	.946	.852	.854	.853	.888.
Diff.	+.002	+.005	+.005	-	+.006	002	+.002	-

Table: The accuracy of morphological tagging when we parameterize the First, Sum and Mean method with a non-linear transformation layer.

Conclusions

- Using an RNN to compute word embeddings for morphological tagging consistently outperforms three other methods, across eight languages with varying morphology.
- For future work: Test this on all languages in UD to improve the robustness of the results.
- Does the composition function matter as much for other tasks?
- Are there alternative non-commutative methods that is more effective than using an RNN?