
Composing Byte-Pair Encodings for Morphological
Sequence Classification

Adam Ek, Jean-Philippe Bernardy
{adam.ek, jean-philippe.bernardy}@gu.se

University of Gothenburg
CLASP

Introduction

In recent years, we see transformers applied to almost all NLP
tasks
The transformer also introduced sub-word tokenization (BPE
tokenization) as a "standard tool"
In this paper we explore how to create word representations
from sub-word representations

Byte-Pair Encodings

Create a vocabulary by splitting a set of strings (sentences)
into N tokens, such that we can represent all strings
The items in the vocabulary won’t correspond to traditional
linguistic units
Thus, when doing some lexical task with the vocabulary, we
assign embeddings to sub-word tokens
The problem that arises is the following: how do we combine
the token embeddings into word embeddings so we can
analyze lexical units?
f ([escient , eifica, elly]) = escientifically

Morphological Sequence Classification

Morphological sequence classification is the task of predicting
grammatical features of a word
In the task, we are given a sentence where we need to predict
the grammatical features of each word

Predicting grammatical features

Grammatical features are primarily given by the morphemes in
a word, so to predict grammatical features we must obtain
information from all BPE tokens.

she loves giraffes
3;FEM;NOM;PRO;SG 3;FIN;IND;PRS;SG;V N;PL

Table: Example from English-EWT.

But, to some extent it’s all about memorization:
I (1;NOM;PRO;SG) vs We (1;NOM;PRO;PL)
was (3;FIN;IND;PST;SG;V) vs is (3;FIN;IND;PRS;SG;V)
This also applies to irregular verbs

Polish feminine nouns

Turkish madness!

Data

Language Typology BPE
word Tags Train Dev Test

Basque-BDT Agglutinative 1.79 919 97k 12k 11k
Finnish-TDT Agglutinative 1.98 591 161k 19k 20k
Turkish-IMST Agglutinative 1.73 1056 46k 5k 5k
Estonian-EDT Agglutinative 1.86 512 346k 43k 43k
Spanish-AnCora Fusional 1.25 177 439k 55k 54k
Arabic-PADT Fusional 1.39 300 225k 28k 28k
Czech-CAC Fusional 1.77 990 395k 50k 49k
Polish-LFG Fusional 1.75 634 104k 13k 13k

Model outline

1 Process sentence through the XLM-Rbase model.

2 Compute weighted sum over transformer layers with a
parameter w ∈ RL

3 Align BPE-tokens to words
4 Compute word embeddings with a function f

Model outline

1 Process sentence through the XLM-Rbase model.
2 Compute weighted sum over transformer layers with a

parameter w ∈ RL

3 Align BPE-tokens to words
4 Compute word embeddings with a function f

Model outline

1 Process sentence through the XLM-Rbase model.
2 Compute weighted sum over transformer layers with a

parameter w ∈ RL

3 Align BPE-tokens to words

4 Compute word embeddings with a function f

Model outline

1 Process sentence through the XLM-Rbase model.
2 Compute weighted sum over transformer layers with a

parameter w ∈ RL

3 Align BPE-tokens to words
4 Compute word embeddings with a function f

Composition functions

A word X consists of the aligned BPE token embeddings and is a
matrix of size (T , 768) where T is the number of aligned tokens.

First: f (X)i = X 0
i

Sum: f (X)i =
∑T

j=1 x
j
i

Mean: f (X)i =
1
T

∑T
j=1 x

j
i

RNN: Use final output from a LSTM

Model outline

1 Process sentence through the XLM-Rbase model.
2 Compute weighted sum over transformer layers with a

parameter w ∈ RL

3 Align BPE-tokens to words
4 Compute word embeddings with a function f

5 Run the sentence through a word LSTM

6 Predict grammatical features for the words

Model outline

1 Process sentence through the XLM-Rbase model.
2 Compute weighted sum over transformer layers with a

parameter w ∈ RL

3 Align BPE-tokens to words
4 Compute word embeddings with a function f

5 Run the sentence through a word LSTM
6 Predict grammatical features for the words

Training and Experiments

We explore both finetuning the XLM-R model, and extracting
bare features
When finetuning, we freeze the XLM-R model the first epoch
Adam optimizer (using cosine annealing learning rate with
hard resets) with a learning rate of 0.001
We use a lower learning rate for the XLM-R model (1e−6)
Label smoothing of 0.03
Weight decay of 0.05 and dropout throughout the model

Recap/outline

bpe0 bpe1 bpe2

xn

Transformer model

wn

LSTM()hn… …

f(⋅)

y = p()hn

+

Figure: Model outline for a single word

Results - Finetuning

Finetuning
Treebank Baseline First Sum Mean RNN
Basque-BDT .676 .857 .884 .877 .901
Finnish-TDT .751 .961 .958 .960 .965
Turkish-IMST .620 .848 .859 .855 .884
Estonian-EDT .740 .956 .955 .955 .961
Spanish-AnCora .842 .977 .977 .977 .979
Arabic-PADT .770 .946 .946 .947 .951
Czech-CAC .771 .968 .968 .968 .975
Polish-LFG .657 .956 .953 .953 .959
Average .728 .933 .937 .936 .946

Table: Accuracy for morphological tagging for the finetuning regime.

Results - Feature extraction

Feature extraction
Treebank Baseline First Sum Mean RNN
Basque-BDT .676 .759 .789 .780 .834
Finnish-TDT .751 .853 .856 .847 .899
Turkish-IMST .620 .742 .741 .735 .775
Estonian-EDT .740 .855 .856 .853 .901
Spanish-AnCora .842 .951 .954 .952 .962
Arabic-PADT .770 .920 .923 .920 .936
Czech-CAC .771 .863 .887 .881 .924
Polish-LFG .657 .828 .844 .840 .878
Average .728 .846 .856 .851 .888

Table: Accuracy for morphological tagging for the feature extraction
regime.

Results - Words composed of two or more tokens

Finetuning Feature extraction
Treebank First Sum Mean RNN First Sum Mean RNN
eu-BDT .739 .802 .790 .835 .657 .715 .703 .774
fi-TDT .940 .946 .946 .952 .780 .805 .794 .861
tr-IMST .730 .780 .778 .818 .653 .683 .664 .711
et-EDT .938 .939 .939 .949 .779 .805 .803 .868
es-AnCora .956 .961 .959 .964 .922 .937 .930 .947
ar-PADT .889 .896 .898 .907 .902 .909 .906 .923
cz-CAC .940 .947 .947 .959 .786 .849 .840 .900
pl-LFG .917 .920 .918 .927 .696 .761 .752 .812
Average .881 .899 .897 .913 .772 .808 .799 .849

Table: Accuracy for morphological tagging on all words that are
composed of two or more BPE tokens.

Results - Accuracy given tokens-per-words

We might also be interested in how the accuracy looks when
the number of tokens per word varies
Roughly the same trends are observed, but with some variation
Note: the distribution of tokens per word is zipfian

Accuracy given tokens per word - Agglutinative languages

1 2 3 4 5 6 ≥7
0.9

0.92
0.94
0.96
0.98

1
Finnish-TDT

1 2 3 4 5 6 ≥7
0.6

0.7

0.8

0.9

1
Basque-BDT

1 2 3 4 5 6 ≥7
0.6

0.7

0.8

0.9

1
Turkish-IMST

1 2 3 4 5 6 ≥7
0.9
0.92
0.94
0.96
0.98

1
Estonian-EDT

Figure: We indicate the method by encoding First as brown, summation
as green, averaging as blue and RNN as red.

Accuracy given tokens per word - Fusional languages

1 2 3 4 5

0.8

0.9

1
Arabic-PADT

1 2 3 4 5 6 ≥7
0.7

0.8

0.9

1
Spanish-ANCORA

1 2 3 4 5 6
0.8

0.85

0.9

0.95

1
Polish-LFG

1 2 3 4 5 6 ≥7
0.85

0.9

0.95

1
Czech-CAC

Commutative methods

First: This method adds an implicit objective to the
transformer model, push all the predictive information to the
first token of a word
Sum and Mean: Sum performs slightly better than averaging
in the feature-extraction training regime, but the difference is
essentially gone when finetuning.
An advantage the RNN method have over these three methods
is more capacity (in terms of additional parameters)
To make a fair comparison, we parameterize these methods
with a non-linear transformation with ReLU activation, which
we pass all token embeddings through.

Parameterization of First, Mean and Sum

Finetuning Feature extraction
First Sum Mean RNN First Sum Mean RNN

eu .864 .894 .890 .901 .772 .793 .794 .834
fi .958 .959 .961 .965 .857 .856 .855 .899
tr .850 .875 .867 .884 .742 .722 .729 .775
et .956 .958 .958 .961 .865 .856 .853 .901
sp .978 .977 .978 .979 .953 .954 .952 .962
ar .949 .945 .947 .951 .925 .923 .920 .936
cz .969 .972 .972 .975 .873 .887 .881 .924
pl .957 .953 .955 .959 .832 .844 .840 .878
Avg. .935 .942 .941 .946 .852 .854 .853 .888
Diff. +.002 +.005 +.005 - +.006 -.002 +.002 -

Table: The accuracy of morphological tagging when we parameterize the
First, Sum and Mean method with a non-linear transformation layer.

Conclusions

Using an RNN to compute word embeddings for morphological
tagging consistently outperforms three other methods, across
eight languages with varying morphology.
For future work: Test this on all languages in UD to improve
the robustness of the results.
Does the composition function matter as much for other tasks?
Are there alternative non-commutative methods that is more
effective than using an RNN?

